IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Universality class of trails in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 413
(http://iopscience.iop.org/0305-4470/30/2/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:02

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 413-421. Printed in the UK PII: S0305-4470(97)72741-0

Universality class of trails in two dimensions

Ihnsouk Guint, Henk W J Bbtet and Theodore W Burkhargit

t Department of Physics, Villanova University, Villanova, PA 19085, USA

1 Laboratorium voor Technische Natuurkunde, Technische Universiteit Delft, Lorentzweg 1,
2628 CJ Delft, The Netherlands

§ Department of Physics, Temple University, Philadelphia, PA 19122, USA

Received 12 March 1996, in final form 17 June 1996

Abstract. A trail is a walk on a lattice that may visit a site more than once but a bond at most
once. We have carried out transfer-matrix studies of trails on the square lattice and of hybrid
walks that interpolate between self-avoiding walks and trails. The results are in agreement with
the same universal exponents as self-avoiding walks. However, the finite-size corrections are
much larger than for self-avoiding walks. An explanation in terms of an irrelevant variable with
scaling indexy, = —11/12 is given.

A trail [1-8] is defined as a walk on a lattice that may visit a site more than once but a
bond at most once. Unlike a self-avoiding walk (SAW), a trail may intersect itself. Due to
the restriction on the bond visits, trails are self-repelling, but not as strongly self-repelling
as SAWs. It has long been suspected that trails and SAWs belong to the same universality
class. The exact enumerations and Monte Carlo studies of Guttmann and others [3-7]
support this interpretation. However, the convergence of the data with increasing number
of steps is much slower for trails than for SAWSs.

Transfer-matrix finite-size scaling methods have yielded very precise estimates of the
critical exponents of SAWSs in two dimensions [9-12]. For example, Derrida [9] found that
phenomenological renormalization of SAWs on the square lattice from strip width 11 to 10
yieldsv = y~1 = 0.750 067, compared with the exact [13, 14] value 3/4. Hoping to obtain
definitive information on the question of the university class, we have carried out similar
calculations for trails on the square lattice and for 'hybrid walks’ that interpolate between
trails and SAWs. As seen below, our data are in agreement with SAW exponents, but we
also find much slower convergence with increasing system size for trails than for SAWSs.

In addition to numerical evidence, a mapping onto the Coulomb gas suggests that trails
and SAWs belong to the same universality class. There is a well known correspondence [15]
between SAWSs and the isotropic critic@l(nr) model in the limitn — 0. Nienhuis [13, 14]
applied the Coulomb gas method to tb&r) model in two dimensions and showed that
cubic anisotropy is an irrelevant perturbation at= 0 with scaling indexyca = —11/12. In
the language of SAWSs or polymers this is the scaling index of a vertex where four polymers
meet [14,16]. The intersections of trails are four polymer vertices and presumably have
this scaling index. Coulomb gas methods are not rigorous, but the predicted scaling index

1 Shapir and Oono [8] have argued that trails on the square lattice belong to the SAW universality class on the
basis of an effectived (2n), n — 0 field theory with an irrelevant cubic symmetry-breaking term.
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—11/12 for intersections is in good agreement with finite-size studies [17], so there is little
reason to doubt it.

The irrelevance of intersections in the SAW model means that they do not change the
universal behaviour for sufficiently low intersection fugacity. However, a higher critical
point could occur at a larger fugacity, separating the trail and SAW universality classes.
This gives us another reason for investigating the universal properties of models with
intersections. We find no evidence for such a higher critical point in the numerical studies
described later. However, the finite-size convergence is clearly slower than for the SAW
model. We attribute the poorer convergence, which is observed in all finite-size studies
of trails, to the irrelevant variable corresponding to the fugacity of the intersections, as
discussed later.

Still another reason for our numerical studies is the controversy surrounding the
correction to scaling exponenh for SAWSs, defined by the asymptotic forrd ~
NY(A+BN~%), for largeN, of the average radius of gyration G of SAWsNfsteps. Here
A = —y,/y;, wherey, = 4/3 andy, are the leading and next-to-leading thermal scaling
indices of theO (n), n — 0 model. There are two candidates fgrfrom the Coulomb gas
approach, the scaling index11/12 for four polymer vertices [10, 16] and a non-leading
thermal scaling index-2 derived in [13]. Enumerations and Monte Carlo studies of SAWS,
reviewed in [18, 19], have yielded estimatesfbetween 0.5 and 1.5, more consistent, for
the most part, withy, = —11/12 than—2. We know of no compelling theoretical reason
why the —11/12 contribution should vanish for SAWs However, recent estimates from
enumerations with largeN [20,21] and our finite-size studies described below are more
compatible with—2 than—11/12. Our corresponding results for trails, on the other hand,
are compatible withy, = —11/12.

Our numerical calculations consider hybrid walks on the square lattice, where at most
two visits per site are allowed. We work in the grand canonical ensemble, assigning a
bond fugacityK to each step of the walk and a fugacityto each site visited more than
once. Both intersections and ‘collisions’, where a walk returns to a site without crossing
itself, have Boltzmann weight. The valuesx = 0 anda = 1 correspond to SAWs and
trails, respectively, and by varying, one may interpolate between these two special cases.
If there is a higher critical point separating the trail and SAW universality classes, it thus
becomes accessible.

We have obtained the exact transfer matrix for one hybrid walk on a strip of width
with periodic (cylindrical) boundary conditions by extending Derrida’s procedure [9] for
SAWs to include non-nested as well as nested configurations, using methods described for
example by Bbte and Nienhuis [11]. The largest eigenvakﬁe? of the one-walk transfer

matrix determines a correlation Iengﬁ” according to [9]
&7 (K, @) = —[In A" (K, 0] 7. (1)

For fixed intersection fugacity we generate sequences of estima&eg&y, L), y(«, L)
for the critical bond fugacity (inverse connectivity) and the thermal scaling index that
approach exact bulk valuekc(a) andy, = 2 — xeng = v 1, respectively, in the limit
L — oo from the phenomenological renormalization equations [22]

L% (Koo, L), @) = (L — D)7XP (Ke(a, L), @) @)

t The close encounters or near collisions of a SAW with itself correspond to four polymer vertices with scaling
index—11/12. In theO (n) model the indexca = —11/12 is not only associated with cubic anisotropic interactions

but also with isotropic interactions such @s - s2)? andsy - s3s2 - s4, wheresy, ... , s s4 are spins at the corners of

an elementary square of the lattice [13, 14]. If absent in the starting Hamiltonian, such interactions are presumably
generated by the renormalization group.
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In[(9&," /0 K) (9”1 /0K) "]
In[L(L — 1)1
The partial derivatives in equation (3) are evaluate& at K.(c, L).
To estimate the magnetic scaling dimensigRg = 2 — y, = 1 — y/2v, we make use
of the relation lim ., L2 (Kc(@), @) = (27 xmag) L, implied by conformal invariance
[23], and calculate the sequence
xmag(L) = L[27&” (Ke(a, L), )] @

which approachesmag in the limit L — co. Another sequence of estimates of the scaling
dimension of the energy densityeng = 2 — y;, in addition to the sequence based on
equation (3), follows from the relation

Xeng(L) = L[27£\? (K¢(, L), )] (5)

analogous to (4). Herefz) is the correlation length associated with two walks on the strip
[10, 12].

In table 1 estimates oKc, y;, Xmag andxeng for SAWs (@ = 0), calculated from
equations (2)—(5), respectively, are given for strip widths< 13. (Strips withL < 11
are analysed in [9].) Extrapolation &f. on the basis of iterated fits [24] with a finite-size
correction exponeng, — y, = —10/3 (see below) yield¥k; = 0.379 052+ 0.000 001, in
excellent agreement with the [20] estimag = 0.379 05228+ 0.000 00014 of the critical
fugacity or inverse connectivity of SAWs on the square lattice. The data in table 1 are also
in good agreement with the accepted exact values [13, 14]

YV = 2 - XQng == 4/3 Xmag == 5/48 = 0.104 166 666 .. (6)

of the SAW exponents. Note that the sequenceyfois not monotonic but must pass
through a minimum foilL > 12 in order to extrapolate to 4/3.

Table 1. Estimates ofK¢, y;, Xmag andxeng for SAWSs @ = 0) from equations (2)—(5).

L K¢ i Xmag Xeng

3 0.365304779 1.38030695 0.145960861 0.699 759482
4 0.373399472 1.35295214 0.128532404 0.692670 246
5 0.376632894 1.34227225 0.118351629 0.684192681
6 0.377909540 1.33747112 0.112940779 0.678737907
7 0.378447688 1.33524159 0.110031096 0.675502494
8 0.378698393 1.33417475 0.108365532 0.673508762
9 0.378827984 1.33364192 0.107336457 0.672191684
10 0.378901312 1.33336370 0.106655017 0.671262850
11 0.378945913 1.33321353 0.106177949 0.670573556
12 0.378974611 1.33313146 0.105829338 0.670042 355
13 0.378993914 1.33308745 0.105566001 0.669621276

In table 2 estimates oK, y;, Xmag andxeng for trails (@ = 1) from equations (2)—(5),
respectively, are given fat < 11. Extrapolation of th&, data, using an iterated fit with a
finite-size correction exponen} —y, = —9/4 (see below), yield&. = 0.367 574-0.000 01,
in excellent agreement with the estimake = 0.367 563+ 0.000001 of Conway and
Guttmann [6]. The finite-size extrapolation reproduces the minimum that the finite-size
data must pass through fdér > 10 in order to be consistent with Conway and Guttmann’s
result.
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Figure 1. Data for the critical bond fugacitK¢(«) of type 1 walks from equation (2) with
a=0,02...,1andL < 13 fora =0, L < 11 fora > 0. The best estimates of [20] for
SAWs (@ = 0) and of [6] for trails ¢ = 1) are indicated on the verticdl = co axis.

Table 2. Estimates ofK¢, y;, Xmag andxeng for trails (@ = 1) from equations (2)—(5).

L K¢ Vi Xmag Xeng

3 0.373913736 1.37740230 0.088156273 0.479376773

4 0.369462256 1.37995849 0.099072006 0.524999724

5 0.368264648 1.37589706 0.103448333 0.553038507

6 0.367836824 1.37145009 0.105573002 0.572883716

7 0.367655441 1.36748236 0.106729231 0.587836947

8 0.367571856 1.36405281 0.107386876 0.599478 530
9 0.367532339 1.36110789 0.107759842 0.608741185

10 0.367514159 1.35857868 0.107961227 0.616237060

11 0.367506746 1.35639960 0.108055983 0.622389784

In Figure 1 data for the critical bond fugaci®.(«), calculated according to equation
(2) fora =0,0.2,...,1, are plotted againgt~%“. The reason for this particular power of
L is given below. The best estimat&s(0) = 0.379 05228t 0.000 00014 for SAWs [20]
and K.(1) = 0.367 563+ 0.000 001 for trails [6] are indicated on the vertidal= oo axis.
As mentioned in the previous paragraph, the data for trails must pass through a minimum
for L > 10 for consistency with the best estimate. There are minima at4 and 9 in
the K. data fore = 0.6 and 08, respectively, and the minimum presumably moves out to
L > 10 fora = 1.

In figures 2—4 estimates of the exponemts xmag and xeng, calculated according to
equations (3)—(5) forr = 0,0.2,...,1, are plotted against ~*¥*2. The reason for this
particular power ofL is given below. The point on the vertical axis corresponding to
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Figure 2. Data for the scaling indey, of type 1 walks from equation (3) with = 0,0.2,...,1
andL < 13fora =0, L < 11 fora > 0. The exact result/8 for the SAW ¢ = 0) is indicated
on the verticalL = oo axis.

L = oo in each of the figures indicates the exact result (6) for SAWs. The data the for
in figure 2 support the interpretation that SAWs and trails belong to the same universality
class convincingly.

The estimates oOfmag for hybrid walks withae = 0.6 and 08 in figure 3 are non-
monotonic, with maxima aL. = 4 and 9, respectively. Presumably the maximum moves
outto L > 10 fora = 1. For this reason it is difficult to extrapolate thg.g Sequence for
trails, given in table 2, reliably. Guttman [3, 4] also found better behaved data, based on
exact enumerations, far =y, than fory = 2y, (1 — xmag).

The dataxeng data fora > 0 in figure 4, which are based on equation (5), are not as
clearly consistent with the SAW prediction 2/3 as the datayfo= 2 — xeng in figure 2,
based on (3). Linear extrapolation through the points foe= 10, 11 in figure 4 leads
to values slightly larger than 2/3 that increase with increasindor example 0.690 for
a = 1. The slight downward curvature of the data with increasinghust increase for
L > 11 for consistency with the SAW prediction. Fitting procedures with the predicted
finite-size exponent, = —11/12 and an additional finite-size correction with exponegt
yield results that are consistent witlang = 2/3, but with a relatively poor accuracy of a
few times 1072

In figures 2—4 one sees that the finite-size corrections generally increase@gases.

The sequences far = 0 anda = 0 seem to vary, for largé, according to different power
laws. The leading power-law correction follows from the standard finite-size scaling ansatz
[25]

L7 (K, ) = fO(LY, L) @

for the correlation lengthg'”’, i = 1,2. Herer(K, «) is the relevant thermal variable,
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Figure 3. Data for the scaling dimensiommag of type 1 walks from equation (4) with
a =0,02,...,1andL < 13 forea = 0, L < 11 fore > 0. The exact result &8 for
the SAW @ = 0) is indicated on the verticdl = co axis.

which vanishes on the critical lin& = K.(«), andu(K, «) is the leading irrelevant
variable. The ansatz (7) is valid in the critical regiph << 1, L >> 1. Since there
are no thermodynamic singularities for finife the right-hand side of equation (7) may be
expanded in a double Taylor seriesiandu. Equations (2)—(5) and (7) imply leading finite-
size corrections of ordek 1 to the estimates oK. and of orderL*: to the exponents
Yty Xmag andxeng for large L.

Substituting the scaling index, = —11/12 for four polymer vertices in these results,
we obtain corrections to the critical bond fugacity and exponents that fall aff- 8¢ and
L1212 respectively. The data for @ o < 1, i.e. walks with intersections, in figures 1
and 2 seem compatible with these power laws. Presumably. th&'? behaviour of the
data for largek in figures 3 and 4 becomes apparent for greater valudstbin we have
considered.

For « = 0 or SAWSs our numerical data are more compatible with= —2, i.e. with
leading corrections to the critical bond fugacity and exponents that fall off 4%° and
L2, respectively, than withy, = —11/12. As mentioned above, we have no theoretical
proof why they, = —11/12 corrections should vanish identically for SAWs. However, our
numerical data show that if thel1/12 corrections exist at all, they have a small amplitude.
One can estimate the leading irrelevant scaling ingefor SAWSs by fitting the SAW data
for xmag @and xeng in table 1 to power laws of the from 4+ BL™«, using the exact values
(6) for A. For L = 10-11, 11-12 and 12-13 the estimateg pfare —2.233, —2.188 and
—2.154, respectively, from themag data and—1.705, —1.680 and—1.665 from thexeng
data. These numbers are closer-@ than to—11/12, but for L = 10-13 the finite-size
corrections are not well fit by a single power law.
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Figure 4. Data for the scaling dimensiomeng of type 1 walks from equation (5) with
a=002...,1andL < 13 fore = 0, L < 11 fore > 0. The exact result /3 for
the SAW @ = 0) is indicated on the verticdl = co axis.

Table 3. Estimates ofK¢, xmag and xeng for type 1 and type 2 hybrid walks. For type 1

walks both intersections and collisions have weightFor type 2 walks the weights areand

1, respectively. The results were obtained from iterated power-law fits to the finite-size data,
using finite-size exponents9/4 and—2. Fora = 0 more accurate extrapolations are quoted

in the text. The uncertainty in the last decimal places, shown in parentheses, is five times the
difference of the two extrapolations using the largest available system sizes. This usually gives
a reasonable estimate, but underestimates the uncertainty if there is an extremum near the largest
system sizes (e.g. in the casexghg for o = 1).

>
e}
D

Lmax « Kc Xmag Xeng

13 0.0 0.37903(2) 0.1042(4)  0.666(1)
11 0.2 0.37689(2) 0.1044(9) 0.667(0)
11 0.4 0.37470(2) 0.1046(8)  0.668(1)
11 0.6 0.37242(2) 0.1049(12) 0.669(2)
11 0.8 0.37004(1) 0.1054(19) 0.670(1)
11 1.0 0.36757(1) 0.1062(29) 0.671(1)
10 0.8 0.36872(2) 0.1063(31) 0.670(3)
10 0.6 0.36988(2) 0.1059(24) 0.670(2)
10 0.4 0.37105(2) 0.1055(16) 0.669(1)
10 0.2 0.37223(2) 0.1052(7)  0.669(1)
10 0.0 0.37343(2) 0.1048(5) 0.669(2)

NMNNOMNNNNRPRRRREBR
N

To obtain additional information on the universality class of trail-like models, we have
also investigated a second type of hybrid model, which interpolates between the trail model
and another SAW-like model, in which ‘collisions’ between walk segments are allowed. In
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type 2 walks the weights of collisions and intersections are logrm@spectively, whereas
both weights equad for type 1 walks. For both types of walk we have determined the
critical bond fugacity from equation (2), the magnetic scaling dimension from (4), and the
energy scaling dimension from (3) anghg = 2—y;. The results are summarized in table 3.
For both models there is good agreement with the SAW universal properties.

Finally we mention a third type of hybrid model, which interpolates between the trail
model and the SAW-type branch@(n = 0) model described by Bte and Nienhuis [11].

The relative distance from the SAW-type model is again denated-or « = 0.25 and
a = 0.5 we calculated the magnetic scaling dimensiggy as described above. The results
agree within a few times 1@ with the SAW value 348.

In summary, we have carried out transfer-matrix calculations of the connectivity and
universal exponents and y of hybrid walks with intersection fugacitg on the square
lattice. The cases = 0 anda = 1 correspond to SAWs and trails, respectively. Our
numerical results strongly support the interpretation that walks withad0< 1 belong to the
same universality class as self-avoiding walks. As in studies based on exact enumerations,
the finite-size corrections for trails are considerably larger than for SAWs. An explanation
in terms of an irrelevant variable with scaling indexy, = —11/12 related to the fugacity
of intersections is given. It would be interesting to reanalyse the enumerations data for
trails [3, 4, 6] taking this irrelevant variable into account.

Finally, we note that Ding and Huang [26], using Monte Carlo simulations, recently
confirmed that trails on the honeycomb lattice are in the SAW universality class and found
that trails on the square lattice behave differently. We suspect that the difference is due to
the large finite-size corrections, not to a different universality class.
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Note added in proof Since submission of this paper for publication, the exact enumeration of SAWs has been
extended from 39 steps [21] to 51 steps (CopieR and Guttman A J 1996Phys. Rev. Lett775284). Analysis

of the longer series provides compelling evidence that the correction to scaling exponeat 32, i.e.y, = 2,
consistent with the transfer-matrix results for SAWs discussed above.
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