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Abstract. A trail is a walk on a lattice that may visit a site more than once but a bond at most
once. We have carried out transfer-matrix studies of trails on the square lattice and of hybrid
walks that interpolate between self-avoiding walks and trails. The results are in agreement with
the same universal exponents as self-avoiding walks. However, the finite-size corrections are
much larger than for self-avoiding walks. An explanation in terms of an irrelevant variable with
scaling indexyu = −11/12 is given.

A trail [1–8] is defined as a walk on a lattice that may visit a site more than once but a
bond at most once. Unlike a self-avoiding walk (SAW), a trail may intersect itself. Due to
the restriction on the bond visits, trails are self-repelling, but not as strongly self-repelling
as SAWs. It has long been suspected that trails and SAWs belong to the same universality
class. The exact enumerations and Monte Carlo studies of Guttmann and others [3–7]
support this interpretation. However, the convergence of the data with increasing number
of steps is much slower for trails than for SAWs.

Transfer-matrix finite-size scaling methods have yielded very precise estimates of the
critical exponents of SAWs in two dimensions [9–12]. For example, Derrida [9] found that
phenomenological renormalization of SAWs on the square lattice from strip width 11 to 10
yields ν = y−1

t = 0.750 067, compared with the exact [13, 14] value 3/4. Hoping to obtain
definitive information on the question of the university class, we have carried out similar
calculations for trails on the square lattice and for ’hybrid walks’ that interpolate between
trails and SAWs. As seen below, our data are in agreement with SAW exponents, but we
also find much slower convergence with increasing system size for trails than for SAWs.

In addition to numerical evidence, a mapping onto the Coulomb gas suggests that trails
and SAWs belong to the same universality class. There is a well known correspondence [15]
between SAWs and the isotropic criticalO(n) model in the limitn → 0. Nienhuis [13, 14]
applied the Coulomb gas method to theO(n) model in two dimensions and showed that
cubic anisotropy† is an irrelevant perturbation atn = 0 with scaling indexyca = −11/12. In
the language of SAWs or polymers this is the scaling index of a vertex where four polymers
meet [14, 16]. The intersections of trails are four polymer vertices and presumably have
this scaling index. Coulomb gas methods are not rigorous, but the predicted scaling index

† Shapir and Oono [8] have argued that trails on the square lattice belong to the SAW universality class on the
basis of an effectiveO(2n), n → 0 field theory with an irrelevant cubic symmetry-breaking term.
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−11/12 for intersections is in good agreement with finite-size studies [17], so there is little
reason to doubt it.

The irrelevance of intersections in the SAW model means that they do not change the
universal behaviour for sufficiently low intersection fugacity. However, a higher critical
point could occur at a larger fugacity, separating the trail and SAW universality classes.
This gives us another reason for investigating the universal properties of models with
intersections. We find no evidence for such a higher critical point in the numerical studies
described later. However, the finite-size convergence is clearly slower than for the SAW
model. We attribute the poorer convergence, which is observed in all finite-size studies
of trails, to the irrelevant variable corresponding to the fugacity of the intersections, as
discussed later.

Still another reason for our numerical studies is the controversy surrounding the
correction to scaling exponent1 for SAWs, defined by the asymptotic formG ≈
Nν(A+BN−1), for largeN , of the average radius of gyration G of SAWs ofN steps. Here
1 = −yu/yt , whereyt = 4/3 andyu are the leading and next-to-leading thermal scaling
indices of theO(n), n → 0 model. There are two candidates foryu from the Coulomb gas
approach, the scaling index−11/12 for four polymer vertices [10, 16] and a non-leading
thermal scaling index−2 derived in [13]. Enumerations and Monte Carlo studies of SAWs,
reviewed in [18, 19], have yielded estimates of1 between 0.5 and 1.5, more consistent, for
the most part, withyu = −11/12 than−2. We know of no compelling theoretical reason
why the −11/12 contribution should vanish for SAWs†. However, recent estimates from
enumerations with largerN [20, 21] and our finite-size studies described below are more
compatible with−2 than−11/12. Our corresponding results for trails, on the other hand,
are compatible withyu = −11/12.

Our numerical calculations consider hybrid walks on the square lattice, where at most
two visits per site are allowed. We work in the grand canonical ensemble, assigning a
bond fugacityK to each step of the walk and a fugacityα to each site visited more than
once. Both intersections and ‘collisions’, where a walk returns to a site without crossing
itself, have Boltzmann weightα. The valuesα = 0 andα = 1 correspond to SAWs and
trails, respectively, and by varyingα, one may interpolate between these two special cases.
If there is a higher critical point separating the trail and SAW universality classes, it thus
becomes accessible.

We have obtained the exact transfer matrix for one hybrid walk on a strip of widthL

with periodic (cylindrical) boundary conditions by extending Derrida’s procedure [9] for
SAWs to include non-nested as well as nested configurations, using methods described for
example by Bl̈ote and Nienhuis [11]. The largest eigenvalueλ

(1)
L of the one-walk transfer

matrix determines a correlation lengthξ (1)
L according to [9]

ξ
(1)
L (K, α) = −[ln λ

(1)
L (K, α)]−1. (1)

For fixed intersection fugacityα we generate sequences of estimatesKc(α, L), yt (α, L)

for the critical bond fugacity (inverse connectivity) and the thermal scaling index that
approach exact bulk valuesKc(α) and yt = 2 − xeng = ν−1, respectively, in the limit
L → ∞ from the phenomenological renormalization equations [22]

L−1ξ
(1)
L (Kc(α, L), α) = (L − 1)−1ξ

(1)

L−1(Kc(α, L), α) (2)

† The close encounters or near collisions of a SAW with itself correspond to four polymer vertices with scaling
index−11/12. In theO(n) model the indexyca = −11/12 is not only associated with cubic anisotropic interactions
but also with isotropic interactions such as(s1 · s2)

2 ands1 · s3s2 · s4, wheres1, . . . , s4 are spins at the corners of
an elementary square of the lattice [13, 14]. If absent in the starting Hamiltonian, such interactions are presumably
generated by the renormalization group.
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1 + yt (α, L) = ln[(∂ξ
(1)
L /∂K)(∂ξ

(1)

L−1/∂K)−1]

ln[L(L − 1)−1]
. (3)

The partial derivatives in equation (3) are evaluated atK = Kc(α, L).

To estimate the magnetic scaling dimensionxmag = 2 − yh = 1 − γ /2ν, we make use
of the relation limL→∞ L−1ξ

(1)
L (Kc(α), α) = (2πxmag)

−1, implied by conformal invariance
[23], and calculate the sequence

xmag(L) = L[2πξ
(1)
L (Kc(α, L), α)]−1 (4)

which approachesxmag in the limit L → ∞. Another sequence of estimates of the scaling
dimension of the energy densityxeng = 2 − yt , in addition to the sequence based on
equation (3), follows from the relation

xeng(L) = L[2πξ
(2)
L (Kc(α, L), α)]−1 (5)

analogous to (4). Hereξ (2)
l is the correlation length associated with two walks on the strip

[10, 12].
In table 1 estimates ofKc, yt , xmag, and xeng for SAWs (α = 0), calculated from

equations (2)–(5), respectively, are given for strip widthsL 6 13. (Strips withL 6 11
are analysed in [9].) Extrapolation ofKc on the basis of iterated fits [24] with a finite-size
correction exponentyu − yt = −10/3 (see below) yieldsKc = 0.379 052± 0.000 001, in
excellent agreement with the [20] estimateKc = 0.379 05228± 0.000 00014 of the critical
fugacity or inverse connectivity of SAWs on the square lattice. The data in table 1 are also
in good agreement with the accepted exact values [13, 14]

yt = 2 − xeng = 4/3 xmag = 5/48 = 0.104 166 666. . . (6)

of the SAW exponents. Note that the sequence foryt is not monotonic but must pass
through a minimum forL > 12 in order to extrapolate to 4/3.

Table 1. Estimates ofKc, yt , xmag andxeng for SAWs (α = 0) from equations (2)–(5).

L Kc yt xmag xeng

3 0.365 304 779 1.380 306 95 0.145 960 861 0.699 759 482
4 0.373 399 472 1.352 952 14 0.128 532 404 0.692 670 246
5 0.376 632 894 1.342 272 25 0.118 351 629 0.684 192 681
6 0.377 909 540 1.337 471 12 0.112 940 779 0.678 737 907
7 0.378 447 688 1.335 241 59 0.110 031 096 0.675 502 494
8 0.378 698 393 1.334 174 75 0.108 365 532 0.673 508 762
9 0.378 827 984 1.333 641 92 0.107 336 457 0.672 191 684
10 0.378 901 312 1.333 363 70 0.106 655 017 0.671 262 850
11 0.378 945 913 1.333 213 53 0.106 177 949 0.670 573 556
12 0.378 974 611 1.333 131 46 0.105 829 338 0.670 042 355
13 0.378 993 914 1.333 087 45 0.105 566 001 0.669 621 276

In table 2 estimates ofKc, yt , xmag andxeng for trails (α = 1) from equations (2)–(5),
respectively, are given forL 6 11. Extrapolation of theKc data, using an iterated fit with a
finite-size correction exponentyu−yt = −9/4 (see below), yieldsKc = 0.367 57±0.000 01,
in excellent agreement with the estimateKc = 0.367 563± 0.000 001 of Conway and
Guttmann [6]. The finite-size extrapolation reproduces the minimum that the finite-size
data must pass through forL > 10 in order to be consistent with Conway and Guttmann’s
result.
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Figure 1. Data for the critical bond fugacityKc(α) of type 1 walks from equation (2) with
α = 0, 0.2, . . . , 1 andL 6 13 for α = 0, L 6 11 for α > 0. The best estimates of [20] for
SAWs (α = 0) and of [6] for trails (α = 1) are indicated on the verticalL = ∞ axis.

Table 2. Estimates ofKc, yt , xmag andxeng for trails (α = 1) from equations (2)–(5).

L Kc yt xmag xeng

3 0.373 913 736 1.377 402 30 0.088 156 273 0.479 376 773
4 0.369 462 256 1.379 958 49 0.099 072 006 0.524 999 724
5 0.368 264 648 1.375 897 06 0.103 448 333 0.553 038 507
6 0.367 836 824 1.371 450 09 0.105 573 002 0.572 883 716
7 0.367 655 441 1.367 482 36 0.106 729 231 0.587 836 947
8 0.367 571 856 1.364 052 81 0.107 386 876 0.599 478 530
9 0.367 532 339 1.361 107 89 0.107 759 842 0.608 741 185
10 0.367 514 159 1.358 578 68 0.107 961 227 0.616 237 060
11 0.367 506 746 1.356 399 60 0.108 055 983 0.622 389 784

In Figure 1 data for the critical bond fugacityKc(α), calculated according to equation
(2) for α = 0, 0.2, . . . , 1, are plotted againstL−9/4. The reason for this particular power of
L is given below. The best estimatesKc(0) = 0.379 05228± 0.000 00014 for SAWs [20]
andKc(1) = 0.367 563± 0.000 001 for trails [6] are indicated on the verticalL = ∞ axis.
As mentioned in the previous paragraph, the data for trails must pass through a minimum
for L > 10 for consistency with the best estimate. There are minima atL = 4 and 9 in
the Kc data forα = 0.6 and 0.8, respectively, and the minimum presumably moves out to
L > 10 for α = 1.

In figures 2–4 estimates of the exponentsyt , xmag and xeng, calculated according to
equations (3)–(5) forα = 0, 0.2, . . . , 1, are plotted againstL−11/12. The reason for this
particular power ofL is given below. The point on the vertical axis corresponding to
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Figure 2. Data for the scaling indexyt of type 1 walks from equation (3) withα = 0, 0.2, . . . , 1
andL 6 13 for α = 0, L 6 11 for α > 0. The exact result 4/3 for the SAW (α = 0) is indicated
on the verticalL = ∞ axis.

L = ∞ in each of the figures indicates the exact result (6) for SAWs. The data the foryt

in figure 2 support the interpretation that SAWs and trails belong to the same universality
class convincingly.

The estimates ofxmag for hybrid walks with α = 0.6 and 0.8 in figure 3 are non-
monotonic, with maxima atL = 4 and 9, respectively. Presumably the maximum moves
out to L > 10 for α = 1. For this reason it is difficult to extrapolate thexmag sequence for
trails, given in table 2, reliably. Guttman [3, 4] also found better behaved data, based on
exact enumerations, forν = y−1

t than forγ = 2y−1
t (1 − xmag).

The dataxeng data forα > 0 in figure 4, which are based on equation (5), are not as
clearly consistent with the SAW prediction 2/3 as the data foryt = 2 − xeng in figure 2,
based on (3). Linear extrapolation through the points forL = 10, 11 in figure 4 leads
to values slightly larger than 2/3 that increase with increasingα, for example 0.690 for
α = 1. The slight downward curvature of the data with increasingL must increase for
L > 11 for consistency with the SAW prediction. Fitting procedures with the predicted
finite-size exponentyu = −11/12 and an additional finite-size correction with exponent−2
yield results that are consistent withxeng = 2/3, but with a relatively poor accuracy of a
few times 10−2.

In figures 2–4 one sees that the finite-size corrections generally increase asα increases.
The sequences forα = 0 andα 6= 0 seem to vary, for largeL, according to different power
laws. The leading power-law correction follows from the standard finite-size scaling ansatz
[25]

L−1ξ
(i)
L (K, α) = f (i)(Lyt t, Lyuu) (7)

for the correlation lengthsξ (i)
L , i = 1, 2. Here t (K, α) is the relevant thermal variable,
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Figure 3. Data for the scaling dimensionxmag of type 1 walks from equation (4) with
α = 0, 0.2, . . . , 1 and L 6 13 for α = 0, L 6 11 for α > 0. The exact result 5/48 for
the SAW (α = 0) is indicated on the verticalL = ∞ axis.

which vanishes on the critical lineK = Kc(α), and u(K, α) is the leading irrelevant
variable. The ansatz (7) is valid in the critical region|t | << 1, L >> 1. Since there
are no thermodynamic singularities for finiteL, the right-hand side of equation (7) may be
expanded in a double Taylor series int andu. Equations (2)–(5) and (7) imply leading finite-
size corrections of orderL−yt+yu to the estimates ofKc and of orderLyu to the exponents
yt , xmag andxeng for largeL.

Substituting the scaling indexyu = −11/12 for four polymer vertices in these results,
we obtain corrections to the critical bond fugacity and exponents that fall off asL−9/4 and
L−11/12, respectively. The data for 0< α 6 1, i.e. walks with intersections, in figures 1
and 2 seem compatible with these power laws. Presumably theL−11/12 behaviour of the
data for largerα in figures 3 and 4 becomes apparent for greater values ofL than we have
considered.

For α = 0 or SAWs our numerical data are more compatible withyu = −2, i.e. with
leading corrections to the critical bond fugacity and exponents that fall off asL−10/3 and
L−2, respectively, than withyu = −11/12. As mentioned above, we have no theoretical
proof why theyu = −11/12 corrections should vanish identically for SAWs. However, our
numerical data show that if the−11/12 corrections exist at all, they have a small amplitude.
One can estimate the leading irrelevant scaling indexyu for SAWs by fitting the SAW data
for xmag andxeng in table 1 to power laws of the fromA + BL−yu , using the exact values
(6) for A. For L = 10–11, 11–12 and 12–13 the estimates ofyu are−2.233, −2.188 and
−2.154, respectively, from thexmag data and−1.705, −1.680 and−1.665 from thexeng

data. These numbers are closer to−2 than to−11/12, but forL = 10–13 the finite-size
corrections are not well fit by a single power law.
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Figure 4. Data for the scaling dimensionxeng of type 1 walks from equation (5) with
α = 0, 0.2, . . . , 1 and L 6 13 for α = 0, L 6 11 for α > 0. The exact result 2/3 for
the SAW (α = 0) is indicated on the verticalL = ∞ axis.

Table 3. Estimates ofKc, xmag and xeng for type 1 and type 2 hybrid walks. For type 1
walks both intersections and collisions have weightα. For type 2 walks the weights areα and
1, respectively. The results were obtained from iterated power-law fits to the finite-size data,
using finite-size exponents−9/4 and−2. For α = 0 more accurate extrapolations are quoted
in the text. The uncertainty in the last decimal places, shown in parentheses, is five times the
difference of the two extrapolations using the largest available system sizes. This usually gives
a reasonable estimate, but underestimates the uncertainty if there is an extremum near the largest
system sizes (e.g. in the case ofxeng for α = 1).

Type Lmax α Kc xmag xeng

1 13 0.0 0.379 03(2) 0.1042(4) 0.666(1)
1 11 0.2 0.376 89(2) 0.1044(9) 0.667(0)
1 11 0.4 0.374 70(2) 0.1046(8) 0.668(1)
1 11 0.6 0.372 42(2) 0.1049(12) 0.669(2)
1 11 0.8 0.370 04(1) 0.1054(19) 0.670(1)
1, 2 11 1.0 0.367 57(1) 0.1062(29) 0.671(1)
2 10 0.8 0.368 72(2) 0.1063(31) 0.670(3)
2 10 0.6 0.369 88(2) 0.1059(24) 0.670(2)
2 10 0.4 0.371 05(2) 0.1055(16) 0.669(1)
2 10 0.2 0.372 23(2) 0.1052(7) 0.669(1)
2 10 0.0 0.373 43(2) 0.1048(5) 0.669(2)

To obtain additional information on the universality class of trail-like models, we have
also investigated a second type of hybrid model, which interpolates between the trail model
and another SAW-like model, in which ‘collisions’ between walk segments are allowed. In
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type 2 walks the weights of collisions and intersections are 1 andα, respectively, whereas
both weights equalα for type 1 walks. For both types of walk we have determined the
critical bond fugacity from equation (2), the magnetic scaling dimension from (4), and the
energy scaling dimension from (3) andxeng = 2−yt . The results are summarized in table 3.
For both models there is good agreement with the SAW universal properties.

Finally we mention a third type of hybrid model, which interpolates between the trail
model and the SAW-type branch 1O(n = 0) model described by Blöte and Nienhuis [11].
The relative distance from the SAW-type model is again denotedα. For α = 0.25 and
α = 0.5 we calculated the magnetic scaling dimensionxmag as described above. The results
agree within a few times 10−4 with the SAW value 5/48.

In summary, we have carried out transfer-matrix calculations of the connectivity and
universal exponentsν and γ of hybrid walks with intersection fugacityα on the square
lattice. The casesα = 0 and α = 1 correspond to SAWs and trails, respectively. Our
numerical results strongly support the interpretation that walks with 0< α 6 1 belong to the
same universality class as self-avoiding walks. As in studies based on exact enumerations,
the finite-size corrections for trails are considerably larger than for SAWs. An explanation
in terms of an irrelevant variableu with scaling indexyu = −11/12 related to the fugacity
of intersections is given. It would be interesting to reanalyse the enumerations data for
trails [3, 4, 6] taking this irrelevant variable into account.

Finally, we note that Ding and Huang [26], using Monte Carlo simulations, recently
confirmed that trails on the honeycomb lattice are in the SAW universality class and found
that trails on the square lattice behave differently. We suspect that the difference is due to
the large finite-size corrections, not to a different universality class.
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Note added in proof. Since submission of this paper for publication, the exact enumeration of SAWs has been
extended from 39 steps [21] to 51 steps (Conway A R and Guttmann A J 1996Phys. Rev. Lett.77 5284). Analysis
of the longer series provides compelling evidence that the correction to scaling exponent is1 = 3/2, i.e.yu = 2,
consistent with the transfer-matrix results for SAWs discussed above.

References

[1] Malakis A 1975J. Phys. A: Math. Gen.8 1985
[2] Zhou Z C and Li T C 1984J. Phys. A: Math. Gen.17 2257
[3] Guttmann A J 1985J. Phys. A: Math. Gen.18 567
[4] Guttmann A J 1985J. Phys. A: Math. Gen.18 575
[5] Guttmann A J and Osborn T R 1988J. Phys. A: Math. Gen.21 513
[6] Conway A R and Guttmann A J 1993J. Phys. A: Math. Gen.26 1535
[7] Lim H A and Meirovitch H 1989Phys. Rev.A 39 4176
[8] Shapir Y and Oono Y 1984J. Phys. A: Math. Gen.17 L39
[9] Derrida B 1981J. Phys. A: Math. Gen.14 L5

[10] Saleur H 1987J. Phys. A: Math. Gen.20 455
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